Chapter 8

Determining Dormancy-Breaking
and Germination Requirements
from the Fewest Seeds

CaroL C. BAskIN AND JERRY M. BAskIN

A small number of seeds greatly limits the number, kind, and size of exper- -
iments that can be conducted to determine the dormancy-breaking and }
germination requirements of a species. For many species, problems related
to a low number of seeds can be solved simply by returning to the field and }
collecting additional seeds. However, in some rare species (and sometimes }
also in common, widely distributed ones) with low seed production, it is §
undesirable or impractical to collect large numbers of seeds. However, §
even with a small number of seeds, it is possible to learn much about the 3

germination biology of a species.

In this chapter, we show how information on seeds of other mem-;
bers of the family and on the life cycle (especially the phenology of seed;

maturation, dispersal, and germination) of the species under study

suggest the kind of dormancy present and how and when it is broken imyj

nature. To facilitate seed germination studies, we describe how to dif
ferentiate the various general kinds of dormancy (or lack thereof)]
Because physiological dormancy is the most common and morphof
physiological dormancy is the most difficult to break, much attention i
devoted to these types of dormancy in this chapter. We have designed 4
move-along experiment involving a small number of seeds to determimi
the sequence of environmental conditions required to break dormand
in seeds with physiological or morphophysiological dormancy. We pre
ent our key for the eight known types of morphophysiological dormane
and discuss the use of data from the move-along experiment in iden -

fying these types.
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t atifying Dormancy Types

jhe time of maturation, seeds of many species including Chrysanthe-
e leucanthemum L. (Baskin and Baskin 1988), Agropyron repens (L.)
pauv. (Williams 1971), and Rumex obtusifolius L. (Steinbauer and

cy-Breaking

11rements esby 1960) germinate over a wide range of environmental conditions;
pse sceds are nondormant (sensu Baskin and Baskin 1985) or nearly so.

e seeds of concern to us in this chapter do not germinate at any condi-

pms when they are freshly matured and thus are dormant. Although it

vI. BASKIN jay not be too difficult to distinguish dormant from nondormant seeds,

patifying the kind of seed dormancy can be difficult. One of the best
Jees to the kind of dormancy in seeds of a given species comes from infor-
jetion in the literature about other members of the family to which the
Jecies in question belongs.

he number, kind, and size of expl
'mine the dormancy-breaking .7
[or many species, problems rek:
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2 ily-Level Dormancy Patterns
EysicarL DorMANCY

beds of some species fail to germinate because the seed (or fruit) coat is
mpermeable to water; this is called physical dormancy. Physical dormancy

peae, Cannaceae, Cistaceae, Cochlospermaceae, Convolvulaceae (includ-

g Cuscutaceae), Cucurbitaceae, Dipterocarpaceae (subfamilies Mono-
deae and Pakaraimoideae but not subfamily Dipterocarpoideae),

rmation on seeds of other mes§
(especially the phenology of sed
n) of the species under study me
and how and when it is brokeni§
| studies, we describe how to
of dormancy (or lack therea
he most common and morp
fficult to break, much attention
this chapter. We have designedi
1all number of seeds to determimd mapublished data). The way to determine whether seeds or fruits are imper-
ions required to break dormang meable to water is to weigh them, place them on a moist substrate for 24
physiological dormancy. We pi hours, blot them dry, and reweigh. If seeds or fruits are impermeable to
f morphophysiological dormancy piater, the surest way to break dormancy is to cut a small hole in the seed or
nove-along experiment in ideni Buit coat, preferably on the cotyledon end so as not to accidentally damage
3 ihe radicle. Acid scarification or heat treatments often are used when it is

baceae, Geraniaceae, Malvaceae (including Bombacaceae, Sterculi-

7 eae, and Tiliaceae), Nelumbonaceae, Rhamnaceae, Sarcolaenaceae, and
apindaceae (Baskin etal. 2000). However, it should be noted that in some
fthese families, such as the Anacardiaceae, Fabaceae, Malvaceae, and

amnaceae, not all taxa have physical dormancy (Baskin and Baskin

I998). For example, in the Anacardiaceae only Rhus, Cotinus, and a few of

e other 70 or so genera have physical dormancy (Baskin and Baskin,
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desirable to break physical dormancy in large quantities of seeds. Freshly
matured seeds or fruits of some tropical members of the Anacardiaceae,
Cucurbitaceae, Fabaceae, Malvaceae, and Sapindaceae are not only per-
meable to water but recalcitrant. That is, if water content of the seed or fruit
decreases to less than about 25 percent of its air-dry weight (depending on
the species), it will lose viability (Baskin and Baskin 1998).

In addition to an impermeable seed or fruit coat, the embryo in seeds
of some species, including Ceanothus sanguineus Pursh, Cercis spp., Rhus
aromatica Ait., and Tilia spp. (see Table 6.10 in Baskin and Baskin 1998 for
complete list), is physiologically dormant. Therefore, germination does not
occur until the seed or fruit coat becomes permeable and dormancy of the

embryo has been broken. See Baskin and Baskin (1998) for a discussion of ,—
how physical dormancy is broken in nature. The remainder of this chap-

ter is devoted to seeds and fruits whose coats are permeable to water.

MorrHOLOGICAL DORMANCY

This type of dormancy occurs in seeds with an undifferentiated embryo and |

in those with a differentiated but very small (underdeveloped) embryo. One

or more (sometimes all) genera in the Balanophoraceae, Burmanniaceae, |
Ericaceae, Gentianaceae, Hydnoraceae, Lennoaceae, Monotropaceae, §
Orchidaceae, Orobanchaceae, Pyrolaceae, and Rafflesiaceae have either §
dwarf or micro seeds with small, undifferentiated embryos consisting of two
or more cells, depending on the species (Baskin and Baskin 1998). In the §
presence of appropriate environmental stimuli, which may include exu-
dates from roots of potential host plants {Parker and Riches 1993}, cells of 3
the embryo divide, and eventually a tissue emerges from the seed. Depend- |
ing on the species, the “germinating” seed produces a tubercle, haustorium, |
or protocorm but not cotyledons or a radicle per se. Because germination §
of seeds with undifferentiated embryos often requires special media and/or
stimulatory compounds (e.g., orchids and parasitic species), consultation §
with a specialist on the propagation of the genus or family in question }

increases the chance of growing the species from seeds.

In at least 55 plant families, including the Apiaceae, Araceae, Arali- §
aceae, Berberidaceae, liliciaceae, Liliaceae, Magnoliaceae, Papaveraceae, i
Ranunculaceae, Taxaceae, and Winteraceae (see Table 3.3 in Baskin and {
Baskin 1998 for a complete list of families), seeds have a fully differentiated
(cotyledons and radicle present) but underdeveloped (small) embryo. The §
embryo must undergo elongation or growth before germination (i.e., radi-
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however, morphophysiological dormancy is used to refer only to seeds with
differentiated, underdeveloped embryos.

Simpliﬁed keyto g
i

e 1. Seed or fruit coat not permea
2. Germination occurs within

Key to the General Types of Seed Dormancy

Although information about the types of dormancy found in a plant fam- scariﬁ?d' R
ily can be very useful, germination studies of a specific species are aided by z i(s}sggggigon does not occu

knowledge of the kind of dormancy occurring in the seeds of that species.
To facilitate identification of the kind of dormancy, a key has been con-
structed (Figure 8.1). This key is based on the permeability of the seed or
fruit coat to water; the characteristics and size of the embryo, which often
may be obtained from the literature (e.g., see Martin 1946); and whether
freshly matured seeds germinate within about 30-45 days at temperatures
simulating those in the habitat at the time of seed maturation. It should be 4
noted that freshly matured seeds of some species can germinate at tem- 3
peratures higher or lower than those in the habitat at the time of seed mat- §
uration. Furthermore, in some species treatments that overcome physio- §
logical dormancy result in a decrease and/or increase in the temperature §
range for germination. A change in temperature requirements for germi- §
nation means that the freshly matured seeds were in conditional dormancy. 4
Conditional dormancy occurs in seeds with nondeep physiological dor- §
mancy, and it represents an intermediate state between dormancy and non-
dormancy (see “Dormancy Continuum” in Baskin and Baskin 1985). :

F 1L Seed or fruit coat permeable i
3. Embryo not differentiated, o
4. Embryo not differentiated

4. Embryo diﬁ'érentiated but
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Physiological and morphophysiological dormancy are the types of greatest §
concern (i.., they can be the most difficult to break) in propagating many §
species from seeds. If seeds have either fully developed or underdeveloped 3
embryos with physiological dormancy, they may require warm and/or cold §
stratification treatments before they will germinate. In both kinds of treat-4
ments, seeds are placed on a moist substrate. The range of effective tem-]
peratures for warm stratification is about 15-35°C (Baskin and Baskin§
1986b), with 20-25°C being optimal for many species (Nikolaeva 1969). 3
Many seeds that require exposure to high summer temperatures before§
they can germinate in autumn (especially those of winter annuals) also geri
minate after 1-3 months of dry storage at ambient room temperatures§
(Baskin and Baskin 1983). The range of effective temperatures for cold]




is used to refer only to seeds v

narncy

dormancy found in a plant fan
of a specific species are aided

ring in the seeds of that species.
dormancy, a key has been con-3
| the permeability of the seed or
size of the embryo, which often
see Martin 1946); and whether 3
out 30-45 days at temperatures §
of seed maturation. It should be
> species can germinate at tem- E
> habitat at the time of seed mat-
-atments that overcome physio-
/o increase in the temperature 1

erature requirements for germi-
s were in conditional dormancy.
ith nondeep physiological dor-
ate between dormancy and non-
n Baskin and Baskin 1985).

yrmancy are the types of greatest
t to break) in propagating many
y developed or underdeveloped
y may require warm and/or cold
srminate. In both kinds of treat-
ite. The range of effective tem-
- 15-35°C (Baskin and Baskin
nany species (Nikolaeva 1969).
1 summer temperatures before
hose of winter annuals) also ger-
it ambient room temperatures
effective temperatures for cold

8. Determining Dormancy-Breaking and Germination Requirements

FIGURE 8.1.

scarified.

summer habitat temperatures.?

summer habitat temperatures.?

4. Embryo differentiated but underdeveloped (small).

5. Seeds germinate within about 30 days at simulated autumn, spring, and
summer habitat temperatures.?

Simplified key to general kinds of dormancy (or lack thereof)
in freshly-matured seeds.

l. Seed or fruit coat not permeable to water.
E 2. Germination occurs within about 2 weeks when seed or fruit coat is

................. PHYSICAL DORMANCY

2. Germination does not occur within about 2 weeks when seed or fruit coat

isscarified. ....... ... COMBINATION OF PHYSICAL AND
E _ PHYSIOLOGICAL DORMANCY
E 1. Seed or fruit coat permeable towater. .......... ... ... ... L. 3
F 3. Embryo not differentiated, or if differentiated it is underdeveloped (small). ... 4
4. Embryo not differentiated. . .................. SPECIALIZED TYPE OF

MORPHOLOGICAL DORMANCY

..... MORPHOLOGICAL DORMANCY

5. Seeds do not germinate within about 30 days at simulated autumn, spring,

and surnmer habitat temperatures? .. .. .. MORPHOPHYSIOLOGICAL
DORMANCY
3. Embryo differentiated and fully developed (elongated). .................... 6

6. Seeds germinate within about 30 days at simulated autumn, spring, and

....................... NONDORMANT

6. Seeds do not germinate within about 30 days at simulated autumn, spring, and

......... PHYSIOLOGICAL DORMANCY

b Bt temperature also should be included.

unti] germination.

f stratification is about 0-10°C, with about 5°C being optimal for seeds of
b many species (Stokes 1965; Nikolaeva 1969). Depending on the species,
some (rather slow) loss of dormancy may occur if seeds that normally come
g out of dormancy during a cold stratification treatment are stored dry at
. room temperatures (Baskin and Baskin 1998).

e Ifitis concluded or suspected that seeds have physiological dormancy
£ of a fully developed or of an underdeveloped embryo, the next step is to

¢ determine what dormancy-breaking treatments to use. These decisions are

L greatly facilitated by data on the phenological life cycle of the species, espe-

cially the timing of seed maturation, dispersal, and germination, and on

L environmental conditions in the habitat from the time of seed maturation

b “In regions where winter temperatures are seldom or never below freezing, simulated winter habi-
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Physiological Dormancy in Seeds with Fully Developed Embryos ‘ Key to kinds of morphoph
Summer is the natural time for loss of seed dormancy in winter annuals, 1 !

. . . . 1. Cold stratification (12-14
and germination occurs in autumn. Seeds of various winter annuals have - 0 ification ( we

radicle and epicotyl or only ¢

been shown to require exposure to high summer temperatures before they - temperatures. ...........
will germinate at autumn temperatures in autumn (Baskin and Baskin ~ § f 2. After cold stratification, bo
1986b). As seeds come out of dormancy, the maximum temperature at E 3. Gibberellic acid substit

which germination is possible increases (Baskin and Baskin 1985). There-

. . 3. Gibberellic acid d
fore, seeds of winter annuals subjected to natural (or simulated) summer 15T 1 acld does ne

i 1 germination. .......
temperatures for 2-3 months germinate at natural (or simulated) autumn ‘_' 2. After cold stratification, on
temperature regimes. In some species, maximum germination does not 3 period of warm stratificatio

{i.e., shoot emerges the sec

1. Cold stratification (12-14 we
gence of radicle or epicotyl.

occur until seeds are exposed to temperature regimes simulating those of
late autumn and early winter (e.g., 15/6°C; Baskin and Baskin 1973).

If the species is a summer annual, the natural time for loss of seed dor- ~ § E 4 Warm stratification (812 s
mancy is winter, and germination occurs in spring and/or summer. Seeds Tl;}gggl ?ﬂd mdi‘{ie or only
of various summer annuals have been shown to require exposure to cold 3 ) tempera e

. . . . . . . 3 3 5. After warm stratification,
stratification before they will germinate at spring temperatures in spring |} NONDEEP SIMPLE
(Baskin and Baskin 1987). As seeds come out of dormancy, the minimum ~ § 5. After warm stratification,
temperature at which germination is possible decreases (Baskin and Baskin cotyl emerges in spring).
1985). Therefore, seeds of summer annuals subjected to 2-3 months of E. 4 Warm shratification (8-12 v

. . . . . 3 . of radicle or epicotyl at auh
cold stratification germinate in spring and/or summer. : 6. Embryo growth (but not

If the species is a perennial whose seeds mature in spring, the temperatures. . ......
dormancy-breaking and germination requirements may be like those ofa 7. After embryo has grow

winter annual (Baskin etal. 1998). That is, the seeds require high summer e

temperatures for loss of dormancy, and nondormant seeds germinate in 7. f;ﬂiri;"g;%oﬂ};z;%r‘;‘;:
autumn. On the other hand, many spring-produced seeds of perennials | 6. Emb(iy o growth does ;ot
require a cold stratification treatment for loss of dormancy and therefore do a subsequent period of ex
not germinate until the subsequent spring, such as Mertensia virginica (L.) 3 » gi‘;i;;‘l’]“ fgffffn:?gﬂg:;;‘
Pers. (Baskin and Baskin 1998, unpublished data). Most autumn-produced 1 g '
seeds of perennials also require a cold stratification treatment for dormancy

loss to occur (Baskin et al. 1993a, 1993b); therefore, nondormant seeds

germinate in spring and/or surnmer (Baskin and Baskin 1988).

: . total length of the seed. Eigl
Morphophysiological Dormancy in Seeds i E been distinguished, based «
with Underdeveloped Embryos 1 E Joss of physiological dorman
Germination does not occur in seeds with morphophysiological dormancy | f of seeds to GA, (Baskin an:
until physiological dormancy has been broken and the embryo has grown ~ §  the various kinds of morpho
to some critical, species-dependent length, which may or may not equal the E key (Figure 8.2).
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FIGURE 8.2.

Key to kindskof morphophysiological dormancy in seeds with differentiated,
underdeveloped embryos.

radicle and epicotyl or only the radicle at simulated spring (e.g., 20/10°C, 15/6°C)
temperatures. ... ... 2
2. After cold stratification, both radicle and epicotyl emerge. ... ... .. ... ..., 3
3. Gibberellic acid substitutes for cold stratification in promoting germination. ..
....................................... INTERMEDIATE COMPLEX

3. Gibberellic acid does not substitute for cold stratification in promoting
germination. ........ ...l DEEP COMPLEX

2. After cold stratification, only the radicle emerges. Shoot (epicotyl) emerges after a
period of warm stratification followed by a second period of cold stratification
(i.e., shoot emerges the second spring).  ....... ... DEEP SIMPLE DOUBLE

genceof radicle orepicotyl. ... ... L 4

4. Warm stratification (812 weeks) of freshly matured seeds results in emergence of
epicotyl and radicle or only the radicle at simulated autumn (e.g., 20/10°C,

15/6°C) temperatures. .. ...t e 5
5. After warm stratification, radicle and epicotyl emerge at autumn temperatures. i
NONDEEP SIMPLE oo
5. After warm stratification, only the radicle emerges at autumn temperatures (epi- ‘
cotyl emergesinspring). ................... DEEP SIMPLE EPICOTYL
4. Warm stratification (812 weeks) of freshly matured seeds results in no emergence
of radicle or epicotyl at autumn temperatures. . ....... ... .. .. oL 6

6. Embryo growth (but not emergence of radicle or epicotyl) occurs at autumn
tEmperatlures. ... ... .. ... 7

7. After embryo has grown, gibberellic acid promotes germination. .........
...................................... INTERMEDIATE SIMPLE

7. After embryo has grown, gibberellic acid does not promote germination; seeds
require cold stratification before they will germinate. ... ... DEEP SIMPLE

6. Embryo growth does not occur at autumn temperatures but does occur during
a subsequent period of exposure to winter temperatures; seeds require cold strat-
ification before they germinate (i.e., seeds require warm followed by cold strati-
fication for germination). .......... ... ... ... .. NONDEEP COMPLEX

been distinguished, based on the environmental conditions required for
loss of physiological dormancy and growth of the embryo and on responses
of seeds to GA, (Baskin and Baskin 1998). To facilitate identification of
the various kinds of morphophysiological dormancy, we have developed a
key (Figure 8.2).
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Winter annuals whose seeds have morphophysiological dormancy ger-
minate in autumn, like those of winter annuals whose seeds have only phys-
iological dormancy (Baskin and Baskin 1990, 1994). Seeds of winter annu-
als have nondeep simple morphophysiological dormancy (Figure 8.2), and
loss of physiological dormancy occurs while seeds are exposed to high tem-
peratures in summer. However, loss of morphological dormancy (i.e., the
embryo elongation that must precede radicle emergence) does not take
place until physiological dormancy is broken and imbibed seeds are
exposed to autumn temperatures. Furthermore, seeds of some species, such
as Chaerophyllum tainturieri Hook., require light for embryo growth in
autumn (Baskin and Baskin 1990). If seeds of C. tainturieri are in darkness
in autumn, embryo growth does not occur, and seeds reenter physiologi-
cal dormancy (secondary dormancy) as habitat temperatures decrease in

- late autumn (Baskin and Baskin 1990). In contrast, seeds of the winter
annual Corydalis flavula (Raf.) DC. do not require light for embryo growth
in autumn (Baskin and Baskin 1994). Therefore, after physiological dor-
mancy is broken in summer, a high percentage of C. flavula seeds germi-
nate even if they are buried.

Not much is known about morphophysiological dormancy in seeds of
summer annuals, probably because few summer annuals are known to have
morphophysiological dormancy. Seeds of the summer annual Aethusa
eynapium L. are dormant at the time of maturation in autumn in England
(Roberts and Boddreil 1985). Therefore, because seeds of A. cynapium
have underdeveloped embryos (Martin 1946), it has been concluded that
the seeds have morphophysiological dormancy (Baskin and Baskin 1998).
However, the type of morphophysiological dormancy in A. cynapium seeds
has not been determined. Cold stratification at 4°C or warm stratification

~ at 30°C promotes germination of A. cynapium seeds. However, cold-
stratified seeds germinated over a wide range of low to high temperatures
(10/4°C, 20/4°C, 20/10°C, and 30/10°C), but warm-stratified ones did not
germinate at low temperatures (Roberts and Boddrell 1985). The envi-
ronmental conditions required for embryo growth in A. cynapium seeds
are unknown. In the field, seeds of A. eynapium germinate primarily in
spring, with some germination (<10 percent) occurring in autumn (Roberts
1979). It is not known whether plants from autumn-germinating seeds of

A. cynapium survive; therefore, we do not know whether this species can
behave as a facultative summer annual. In some winter annuals, such as 3
Papaver spp. (Roberts and Boddrell 1984), germination occurs mostly in  §
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E autumn with plants behaving as winter annuals, but some seeds germinate
f In spring with plants behaving as summer annuals; these species are fac-
t ultative winter annuals. Seeds of Papaver spp. have underdeveloped, phys-
f iologically dormant embryos and thus morphophysiological dormancy
£ (Baskin and Baskin 1998).

}- Numerous perennial species have seeds with morphophysiological dor-
E mancy. Depending on the species, a period of exposure to conditions suit-
, able for warm and/or cold stratification (hereafter these periods of exposure
t will be called warm stratification or cold stratification) may be required to
f break dormancy (Figure 8.2). Decisions about which dormancy-breaking
e protocol to use for seeds of a given species are aided by information on seed
¢ dispersal and germination of the species in the field. For example,

o If seeds are dispersed in spring and germinate in autumn, they may

have nondeep simple morphophysiological dormancy and therefore
require only warm stratification for dormancy loss (e.g.,
Chaerophyllum tainturieri; Baskin and Baskin 1990). It should be
noted that another explanation for delay of germination until
autumn is that seeds have only morphological dormancy, but they
have a low temperature requirement for germination (e.g., Isopyrum
biternatum [Raf.] T. & G.; Baskin and Baskin 1986a).

If seeds are dispersed in autumn and germinate in spring, they may
have deep complex morphophysiological dormancy and therefore
require only cold stratification for dormancy break (e.g., Heracleum
sphondylium L.; Stokes 1952). However, seeds might have deep
simple double morphophysiological dormancy, with only the radicle
emerging in spring after a period of cold stratification; shoot growth
would not occur until the second spring (e.g., Trillium grandiflorum
[Michx.] Salisb.; Barton 1944).

If seeds are dispersed in spring and germinate the next spring, they
may have deep complex morphophysiological dormancy and
therefore require only cold stratification for dormancy break (e.g.,
Delphinium tricorne Michx.; Baskin and Baskin 1994a). The warm
period to which seeds are exposed in summer is not required to break
dormancy.

If seeds that mature in summer are dispersed over a period of many
months and germinate only in spring, they may have nondeep
complex morphophysiological dormancy. These seeds would require
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both warm and cold stratification to break dormancy. Seeds dispersed
in summer and early autumn would be warm stratified before being
cold stratified in winter and therefore would germinate in spring
(e.g., Osmorhiza longistylis [Torr.] DC.; Baskin and Baskin 1984).
Seeds dispersed too late in autumn to be warm stratified would not
germinate until the second spring, after they had been warm
stratified in summer and cold stratified in the subsequent winter.
Cold stratification is effective in promoting germination of seeds with
nondeep complex morphophysiological dormancy only if it follows
warm stratification.

» If seeds mature in early autumn but do not germinate until the
second spring (e.g., Panax spp.; Baskin and Baskin 1998), they may
have deep simple morphophysiological dormancy. Seeds with this
type of dormancy require three treatments (in sequence) before they
will germinate: warm stratification in summer, a period at autumn
temperatures for embryo growth, and cold stratification in winter.
Seeds do not germinate in the field in the first spring after dispersal
because they are dispersed too late in autumn to be exposed to a long
enough period of warm stratification to complete the first phase of

dormancy loss.

172

Move-Along Experiment

Over the years, we have developed an experimental design that allows one
to learn much about the germination ecology of a species, even if little or
nothing is known about its life cycle (Table 8.1). Eighteen dishes of seeds
([two treatments + four controls] X three replications) are used in this
experiment, and seeds are placed on wet sand or soil. We prefer to use 50
seeds per dish, but the number per dish can be reduced if seed supplies are

limited. This technique also is a good way to learn something about a ]
species before a lot of time, energy, materials, and seeds is invested in large :
experiments. In our laboratory, seeds are exposed to 14 hours of light per }
day (40 pmol m %!, 400-700 nm, cool-white fluorescent light). We use
30/15°C to simulate summer, 20/10°C and then 15/6°C to simulate }
decreasing temperatures in autumn, a constant temperature of 1 or 5°C (or 3
sometimes 5/1°C) for winter, and 15/6°C and then 20/10°C to simulate }
increasing temperatures in spring. These temperature regimes generally
approximate seasonal temperature changes in much of temperate eastern ;
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 break dormancy. Seeds dispersed TABLE 8.1
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Design for move-along experiment to determine dormancy-breaking and
germination requirements of seeds; seeds are placed on a wet substrate and
given a 14-hour daily photoperiod at each temperature regime.
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. North America (Wallis 1977), but the temperatures easily can be modified
E to simulate conditions in other parts of the world. For example, to simulate
E temperatures for the boreal region, 15/10°C or 20/10°C might be used for
E the highest temperature regime, but to simulate temperatures for the
* Mediterranean region 15/10°C might be used for the lowest temperature
» regime. In our studies, daily temperature regimes are 12/12 hours, and
Lights come on in the incubators 1 hour before the beginning of the high-
- temperature period and remain on for 1 hour after the beginning of the
¥ low-temperature period.

3 Controls for the experiment are seeds incubated continuously at each
temperature regime. If seeds are nondormant or if they have morphologi-
cal dormancy, they will germinate at one or more of the temperature
regimes. Also, seeds of some species may require a long period at a partic-




TABLE 8.2

Germination percentages (mean percentage + SE) of seeds of Zigadenus leimanthoides and Zigadenus densus moved through

two series of temperature regimes. Imbibed seeds were exposed to 14 hours of light each day. Control seeds were kept

continuously at 5°C, 20/10°C, and 30/15°C.
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'_ temperature for dormancy break and germination. For example, seeds
BCeratiola ericoides begin to germinate after about 90 days at 30/15°C,
jd continuous incubation on a wet substrate at high temperatures is opti-
il for dormancy break and germination of seeds of this species (Baskin et
k. unpublished data).

f During an experiment, seeds are moved from one temperature regime
Bthe next in each of the two series of temperature regimes (Table 8.1).
Pherciore, the experiment is called a move-along experiment. Series A
Is us whether warm stratification alone is sufficient for dormancy break,
pmd Series B tells us whether cold stratification alone is sufficient for dor-
lancy break.

E By moving seeds through Series A and B concurrently, it is possible to
ine whether warm stratification must precede cold stratification before
preds can germinate. For example, seeds of Zigadenus leimanthoides Gray
pnd Zigadenus densus (Desr.) Fernald require cold stratification for loss of
wmarncy, but warm stratification does not have to precede cold stratification
able 8.2). Seeds kept at 5°C for the duration of the experiment eventually
Eperminated at 5°C, but germination was faster for seeds moved from 5°C to
£20/10°C than it was for those kept continuously at 5°C (Table 8.2). Embryo
fgmowth occurred while seeds were at 5°C (Baskin et al. 1993b).

. The information obtained from transferring seeds through Series A and
E B allows one to use the key for types of morphophysiological dormancy (Fig-
E mre 8.2); however, additional information is needed for final decisions about
 some types of dormancy. If seeds germinate after cold stratification, their
Jf response to GA, must be determined to know whether seeds have interme-
¢ diate or deep complex morphophysiological dormancy. Fresh seeds (i.e.,
seeds that have not been cold stratified) can be placed on filter paper mois-
| tened with water or with a solution of 100 or 1,000 mg/L GA, and distilled
E water and incubated at 20/10°C for 12 or more weeks (Baskin et al. 1992).
'~ To help distinguish between intermediate simple, deep simple, and
i nondeep complex morphophysiological dormancy, we need to know
¥ whether embryos grow in autumn or in winter. Also, if embryos grow in
i autumn, will the seeds germinate when treated with GA;? Embryo growth
in autumn (after seeds are warm stratified in summer) but lack of germi-
nation in autumn indicates that seeds have either intermediate simple or
deep simple morphophysiological dormancy, depending on their response
to GA,. Seeds (with elongated embryos) can be transferred to dishes con-
taining filter paper moistened with 1,000 mg/L GA; (GA,,, may work as
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well or better) to determine whether GA, will substitute for cold stratifica-
tion in promoting germination. If GA, promotes germination, seeds have
intermediate simple morphophysiological dormancy, but if GA, does not
promote germination, seeds have deep simple morphophysiological dor-
mancy. However, it should be noted that GA; promotes embryo growth
{but not germination) in seeds with deep simple morphophysiological dor-
mancy (Baskin and Baskin 1989). If seeds are warm stratified in summer
and embryos fail to grow in autumn but do grow in winter, seeds have non-
deep complex morphophysiological dormancy.

If seeds are moved through Series A and B concurrently and no germi-
nation occurs, there are several things to consider:

¢ The seeds may not be viable. A few seeds could be removed from the
dishes and examined or tested to determine whether they are viable.
We recommend excising the embryo and determining its degree of
firmness and color. A firm, white embryo probably is alive; a soft,
slightly tan or gray one is dead. In endospermous seeds, it is useful to
compare the color of the embryo with that of the endosperm. If the
embryo is darker than the white endosperm, the embryo is nonviable.
Visual examination of embryos can be followed by tetrazolium tests
(Grabe 1970). In our experience, firm, white embryos give a positive
tetrazolium test, indicating viability, but soft, gray ones give a negative
test. Furthermore, it should be noted that if seeds are dead or have
low vigor, they often are attacked by fungi.

* Four weeks at 20/10°C may not be long enough for the embryo to
become fully elongated. After 12 weeks of warm stratification at
30/15°C, seeds of Jeffersonia diphylla (L.) Pers. required 6 weeks at
20/10°C for completion of embryo growth (Baskin and Baskin 1989).

~» A winter temperature of 5°C may be too high for effective cold
stratification to occur (Baskin et al. 1995); therefore, 1°C or 5/1°C
may be required to break dormancy.

* Seeds of some species may germinate to higher percentages in
darkness than in light (Baskin and Baskin 1998).

We have emphasized the usefulness of the move-along experiment in
determining the kind of morphophysiological dormancy; however, it can
be helpful in studying seeds with fully developed but physiologically dor-
mant embryos. For example, seeds of Floerkea proserpinacoides Willd.
(Baskin et al. 1988) and Cardamine concatenata (Michx.) O. Schwarz
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[Baskin and Baskin 1994b) have fully developed embryos with physiolog-
feal dormancy. Seeds of these two species need cold stratification before
Ihey will germinate. However, a period of warm stratification before the
bold stratification treatment reduced the length of the cold stratification
' exiod required for 50 percent germination from 19 to 8 weeks in F. pros-
wpinacoides and from 19 to 13 weeks in C. concatenata seeds. Thus, using
Beries A and B concurrently permits detection of species whose seeds have
Belly developed physiologically dormant embryos in which warm stratifi-
eation reduces the cold stratification requirement for germination.
b 1f seed supplies are limited, perhaps only Series A or B can be used.
fowever, it sometimes takes longer to obtain seedlings using only one of
e two series than it does when seeds are moved through Series A and B
o) currenﬂy Also, if Series A is used alone and seedlings are obtained
fter seeds have been exposed to 5°C for 12 weeks, one does not know
hether warm stratification is a necessary part of the dormancy-breaking
protocol. Thus, when Series A or B is used alone, seeds may germinate, but
ne is not conducting an experiment per se.
. If the number of seeds is very limited, one could use only three dishes
of seeds and move them each season of the year to simulated habitat tem-
eratures (i.e., summer, autumn, winter, spring). We suggest starting with
temperature regime simulating temperatures in the habitat at the time of
Eseed maturation and dispersal. However, this approach is not experimen-
Ptal. If seeds are locally produced, the same germination results may be
obtamed just as easily by planting seeds outdoors, where they would be
lnposed to natural temperature changes.
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E embryo (= specialized morphological dormancy); differentiated, under-
| developed (small) embryo (= morphological or morphophysiological dor-
E mancy); or a fully developed embryo (nondormancy or physiological dor-
E mancy). Regardless of the type of embryo, data from a move-along
f experiment make it possible to learn much about the dormancy-breaking
and germination requirements of a species by using only a few hundred
b seeds.
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